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ABSTRACT 
 

This paper summarizes on-going experimental work at 
NASA Langley Research Center to measure the dynamics 
of a 1.016 m (40 in) square polyimide film Kapton 
membrane.  A fixed fully automated impact hammer and 
Polytec PSV-300-H scanning laser vibrometer were used 
for non-contact modal testing of the membrane with zero-
mass-loading.  The paper discusses the results obtained 
by testing the membrane at various tension levels and at 
various excitation locations.  Results obtained by direct 
shaker excitation to the membrane are also discussed.              
 
1. INTRODUCTION 

 
With the increasing interest in large ultra-lightweight 
space structures and the desire for further exploration and 
discovery in space, revolutionary concepts for large 
antennas and observatories, solar sails, inflatable solar 
arrays and concentrators, and inflatable habitats, are 
being studied in NASA's Gossamer Spacecraft Initiative[1-

3].  These systems will use new, ultra-lightweight materials 
(e.g., carbon nanotubes and membranes with thicknesses 
less than 5 microns).  In the next few years, prototype 
hardware will be produced and will require structural 
testing and validation.  To date, only a few experimental 
studies concerning the vibration of pre-tensioned flat 
membranes for space structures applications have been 
performed[4-7].  Their delicate nature requires non-
contacting structural measurement techniques. Laser 
vibrometry is one candidate technology for this purpose. 
 
The research reported in this paper was conducted to 
begin to address the technical challenges and 
requirements of modal testing for future ultra-lightweight 
and inflatable space structures.  Specific objectives of this 
work are to investigate the effectiveness (i.e., accuracy, 
precision, repeatability, etc.) of laser vibrometer 
measurements obtained on a thin pre-tensioned flat 

membrane at various tension levels and using various 
excitation methods.   

 
2. TEST ARTICLE AND EXPERIMENTAL PROCEDURE 
 
2.1 Description of Test Article 

 
The test specimen used for this study was a 1.016 m (40 
in) square polyimide Kapton membrane with a thickness 
of 0.0508 mm (0.002 in).  Figure 1 shows the test 
configuration for this study.  The test article was set in a 
diagonal configuration to allow for easier mounting of 
tensioning hardware.  Each of the corners of the material 
were reinforced using 0.12 mm (0.005 in) thick 
transparency film on both sides.  Rubber grommets were 
used to avoid tearing of the membrane under tension 
loads.  All four corners of the article were tensioned using 
adjustable turnbuckles.  The test article was attached to 
the turnbuckle with 0.0126 gage wire.  Force gauges were 
used to determine tension at each of the four corners.  
The tensioning devices were supported by a 2.159 m (85 
in) square aluminum frame.  A 6.35 mm (0.25 in) clear 
acrylic plate was placed on the front side of the frame to 
reduce ambient air currents on the membrane.   
 
2.2 Experimental Procedure  
 
A Polytec PSV-300-H scanning laser vibrometer system 
was used to measure vibration of the test article.  To 
provide more accurate measurements, 100 retro-reflective 
dots were adhered to the membrane in a grid pattern at 
even spacing of 101.6 mm (4 in) to allow for increased 
reflection of the laser beam to the laser vibrometer.  The 
Polytec software was used to view frequency response 
functions (FRF’s) and operating deflection shapes 
(ODS’s).  ME’scope and IDEAS® software were used to 
perform further analysis. 
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Figure 1:  Experimental test setup

  
The test article was excited using a Piezotronics 
PCB086B09 impact hammer which was triggered by a 
digital timer switch box for automated excitation.  The 
hammer was secured to a heavy steel plate set on a table 
positioned on the backside of the membrane as shown in 
Figure 2.  The impact hammer was used to avoid mass 
loading of the article and to provide a consistent excitation 
input force.  This excitation method provided an out-of-
plane disturbance on the membrane.  The hammer 
location on the membrane was varied to allow for 
excitation of different modes and to obtain a more 
complete dynamic model of the membrane.  The various 
hammer locations, shown in Figure 3, included excitation 
at the corners as well as within the body of the membrane.  
Tests were performed at a 10 N (2.3 lbf) tension level at 
locations 2-7.  Hammer location number 1 was used to 
perform tests on the membrane at various tension levels.  
The FRF’s for these tests were computed using 3 
ensemble averages and 480 frequency lines from 0 to 30 
Hz.  The duration of each test was approximately 80 
minutes to acquire all 100 FRF’s.  

Figure 2: Impact hammer setup 

 
For comparative analysis, a Ling Dynamic Systems V203 
electrodynamic shaker was used to excite the lower 
corner of the membrane.  The shaker was placed on the 
backside of the membrane and used a thin metal stinger 
to transmit input forces to the test article.    
 

Digital timer 

Impact hammer 

membrane
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Figure 3: Impact hammer excitation locations 

 
A force gauge was used on the end of the stinger to 
measure input force.  The opposite side of the force 
gauge was adhered to the membrane as shown in Figure 
4.  Tests were performed using a pseudo-random signal 
with a bandwidth of 0 to 100 Hz.  The FRF’s were 
computed using 3 ensemble averages and 480 frequency 
lines from 0 to 30 Hz.   
 
All of the modal tests used highly sensitive 10 lb load 
cells.  The high sensitivity allowed for better resolution of 
small forces for more accurate FRF’s.  All of the vibration 
measurements discussed in this paper were made at 
ambient temperature and pressure conditions inside the 
high bay of the structural dynamics laboratory located at 
the NASA Langley Research Center.  
 
3. RESULTS 
 
3.1 Variation in Impact Hammer Excitation Location 
 
Figure 5 summarizes the dominant frequencies identified 
by the various impact hammer tests.  There was little 
change in frequency of these modes with variation in 
excitation location, and the frequency differences that did 
occur appear to be related to the relatively small variation 
in membrane tension between tests as shown in Figure 6.  
The ODS’s obtained from excitation location 1 are 
illustrated in Figure 7.  The ODS’s are very symmetric, as 
can be expected given the test configuration, and due to 
the fact that there was zero mass loading during 
excitation.  Several of the modes could not be excited at 
locations 5-7 since the excitation was located near a node  

Figure 4: Shaker se
 

Figure 5: Resonant frequencies (H
excitation locations 1

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Membrane average tensio
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Figure 9: Strong ODS for excitation at lower corner of 
membrane (#2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Coherence near drive point for excitation at 
upper right edge of membrane (#7) 

 
can be expected since the excitation is occurring in a 
region of low stiffness and high flexibility near the edge of 
the membrane, where it may exhibit local nonlinear 
response.  Figure 12 shows improved drive point 
coherence for the test performed with the excitation in the 
body of the membrane (#1) where the membrane has a 
higher stiffness than at the edge location. 
 
Figure 13 is a typical FRF that shows the response within 
the body of the membrane due to excitation at the lower 
corner (#2).  This particular test was able to excite many 
symmetric, realistic looking ODS’s up to about 20 Hz.  
Many of these ODS’s are similar to the one shown in 
Figure 9 with 2nd order bending along the diagonal, while 
other ODS’s had 1st, 3rd, or 4th order bending along the 
diagonal.  More work is needed to validate the accuracy of 
these modes. 

 
 
 
 
 
 
 
 

 

 

 

Figure 10: Strong ODS for excitation at right lower 
edge of membrane (#6) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Coherence near drive point for excitation 
above the lower corner of membrane (#1) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 13: FRF for excitation at lower corner (#2) 
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3.2 Variation in Tension Loads 
 
A series of impact hammer modal tests were performed 
with the membrane at the various tension loads shown in 
Table 1.  The tests were conducted with the excitation 
occurring above the lower corner of the membrane (#1).  
Figure 14 shows that the three dominant frequencies 
increase with increasing membrane tension load.  All 
three natural frequencies are shown to increase at 
approximately the same rate in an approximately linear 
fashion.  Mode 3 (ODS illustrated in Figure 7 at 3.1 Hz) is 
not shown in Figure 14, because it has a node line near 
the drive point and could not be consistently excited.      
 
 
 
 
 
 

Table 1: Tension loads 

Figure 14: Natural frequency as a function of 
membrane tension load 

 
3.3 Shaker Test 
 
A shaker test was performed by applying a pseudo-
random input to the lower corner of the membrane as 
described in section 2.2 of this paper.  As shown in Figure 
15, the FRF’s obtained using shaker excitation were 
noisy.  Also, the ODS’s were not symmetric as would be 
expected given the test configuration.  The modes may 
have been affected by the mass and stiffness effects of 
the shaker attachment through the stinger.  Typically, the 
stinger is used to uncouple the effects of the shaker from 
the test article by providing low transverse and rotational 
stiffness.  However, in this case coupling effects may 
occur since even a thin stinger has a relatively high 

transverse stiffness compared to the membrane.  It should 
be noted that only 3 ensemble averages were used to 
calculate the FRF’s for comparison with impact hammer 
results.  Increasing the averages may reduce the noise in 
the FRF’s, and this will be looked at in the future.  Also, 
additional tests are planned using alternate excitation 
signals, such as periodic chirp and burst random at 
various force levels.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: FRF for shaker excitation at lower 
corner of membrane 

 
4. FUTURE WORK 
 
Future work will focus on characterizing the nonlinear 
dynamic response of the membrane using constant force 
sine sweeps, performing modal tests in a vacuum 
chamber for comparison with ambient atmospheric data to 
determine air mass and damping effects, experimenting 
with alternate excitation methods, which may include 
piezoelectric devices and non-contact magnetic exciters, 
and correlating test and analysis results. 
 
5. CONCLUSIONS 
 
A fixed fully automated impact hammer and laser 
vibrometer were used for non-contact modal testing of a 
thin pre-tensioned membrane with zero-mass-loading.  
From these tests the following conclusions are drawn: 
 
(i) The resonant frequency of the first four dominant 
modes varies little with variation in excitation location, and 
the differences that did occur can be attributed in large 
part to the variation in membrane tension between tests.   
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(ii) Only the first two dominant operating deflection 
shapes (ODS’s) could be consistently excited with 
changes in drive point and only by excitation occurring at 
the corner locations.   
 
(iii) Multiple excitation locations are required to obtain a 
complete modal model of the higher-order modes.   
 
(iv) The membrane has stronger nonlinear response 
characteristics when excited near the edge of the 
membrane in a region that has lower stiffness than at 
other excitation locations within the body of the 
membrane.   
 
(v) Many symmetric, realistic ODS’s were identified from 
some tests with frequencies as high as 20 Hz.  However, 
further work is needed to verify the accuracy of these 
results.   
 
(vi) The three dominant mode natural frequencies 
increase with increasing membrane tension load at 
approximately the same rate and in an approximately 
linear fashion.   
 
(vii) Preliminary results indicate that direct membrane 
electrodynamic shaker excitation cannot properly excite 
any of the modes.     
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